# Random precessing
import numpy as np
import pandas as pd
import random ,os, csv ,re
from glob import glob
# Make Image
import cv2
from PIL import Image
import matplotlib.pyplot as plt
# default load
import tensorflow as tf
from tensorflow.keras.utils import to_categorical
#impage preprocessing
from tensorflow.keras.preprocessing import image as image_utils
from tensorflow.keras.preprocessing.image import(ImageDataGenerator)
from tensorflow.keras.preprocessing.text import(text_to_word_sequence)
#impage preprocessing
from tensorflow.keras import layers
from tensorflow.keras.models import(Model, load_model)
# LabelEncoder
from sklearn.preprocessing import LabelEncoder
# keras models
from tensorflow.keras.layers import (
BatchNormalization, SeparableConv2D, MaxPooling2D, Activation,
Flatten, Dropout, Dense , Input
)
# Keras Applications
from tensorflow.keras.applications import(ResNet50)
keras Docker 기본 패키지 이미지 프로세싱용 tensorflow 2.4.3
ubunt GPU 설정 후 Keras 버전 테스트 MNIST
ubunt GPU RTX3080 설정 후 Keras가 실행 되는지 확인 해봐야 한다. RTX3080을 설치가 다 끝났는데, 케라스가 설치되어 있지 않아, 계속 재 설치 하였기 때문이다.
그렇다고 무언가 대단한 것을 테스트 할 필요는 없다. 되는지 만 확인 해야 하기 때문이다.
아래의 소스코드는 "케라스 창시자에게 배우는 딥러닝" 책에서 인용한 것이다.
ubuntu 18.04 RTX3080 GPU 설정 및 Tensor flow 2.4, Keras 2.4.3 설치
RTX 3080 GPU가 들어 있는 그래픽 카드를 구입한다고 해서, 모든 것이 완벽하게 되는 것이 아니다. 윈도우 환경에서는 딥러닝을 잘 안돌리니까? Ubuntu 환경에서 돌려야 한다.
앞으로 이야기하는 설정은 아래의 서적에 최적화 되었는 방법론이다.
![]() |
케라스 창시자 GPU 설정 |
어찌 되었든 cuda 설치 이후에 아래와 같은 오류 메시지가 있었음에도 불구하고, 설정이 되었다.
Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.1/lib64:/usr/local/cuda-11.1/lib64:
css cheat sheet 클래스 선택자, margin(마진), display , center 조정 간단한 구성 요소
앞에서는 html의 간단한 sheet를 소개 하였습니다. html은 주로 골격을 나타나는 것이라, 디자인을 하는데는 css로 하여야 합니다. 아래 코드와 같이 css 관련 하여 매우 간단하게 코딩 하겠습니다. body 부분의 css 코딩 ...
-
KoLNP 로딩하면 아래와 같은 메시지가 나올 경우가 있다. warning message: in i.p(...) : 패키지 ‘c:/users/rdmkyg/appdata/local/temp/rtmps6vlku/file23e45dd83537/konlp...
-
통계학에서 베이블 분포(Weibull distribution)는 연속확률 분포로써 고장 확률에 대한 예측에 대하여 많이 쓰인다. 신뢰도를 측정하는데 많이 쓰이는데, 시스템 혹은 부품이 작동을 시작하여 그 시점까지 고장 나지 않고 여전히...
-
논리연산자 AND,OR는 실무에서 많이 쓰이는 방법이다. R을 처음 시작 하는 컴퓨터 프로그래머는 for문을 많이 사용한다. 하지만 R에서 for문은 속도 측면에서 최악이다. 그리고 AND, OR, IF 문도 for문을 돌리지 않고 dpl...
-
딥러닝을 그냥 시작 하면 매우 어려울 수도 있다. 왜냐 하면, 선형대수학이나, 통계학에 대한 기초 이론이 있어야 어느 정도 가능 하다. 이번에 하는 시간은 매우 적지만, 기초에 대한 부분을 우선 적으로 다룰 예정이다. 1. 딥...
-
R에서 행렬(matrix)와 배열(array)를 쓰는 이유는 연산 속도의 사유로 많이 사용하게 된다. dataframe으로 된 데이터 셋을 연산하게 되면 속도가 매우 느린 현상이 발생 하게 된다. R에서 멀티코어 코딩을 하려면, 반드시 알...
-
Rstudio 4.1.1 버전하고 Rstudio 2021.09.0의 계정 이름이 한글 일 때 아래와 같은 오류가 발생 한다. package ‘devtools’ successfully unpacked and MD5 sums checked The do...
-
R 환경 설정 파일에서 반드시 쓸 일이 있다. 오라클 한글 인코딩 설정 할 때 꼭 필요 한데, 이 부분을 잘 몰라서, 우리 회사 서버 팀과 같이 서로 고생들만 하였다. 어찌 되었든 이 부분에 대한 개념은 매우 중요 하니, 아래와 같이 이...
-
R과 Python 공부에는 분명 계절성이 있다. Python은 주로 겨울철에 많이 한다. 이유는 아주 간단한데, GPU를 돌리게 되면, 전력 소비량도 많고, 여름철에는 더워지기 때문이다. 겨울철에는 GPU에서 나오는 열을 ...
-
predict를 이용한 예측은 현업 실무 할 때 매우 중요하다. 모델을 만들었는데, 그것을 예측하여, 결과값을 만들어 전사 DB에 업데이트 하였다. 회귀분석 Predict Observation trees 데이터 셋에 대해 다음의 문제를 해...
-
딥러닝에서 왜 통계를 다루는 이유는 딥러닝을 배우려면 초기 모델부터 가야 하는데, 초기 모델은 대부분 통계에서 시작 되기 때문이다. 초기의 뉴런은 회귀 방정식에서 나온 직선 가지고 검증을 하였기 때문이다. 통계 기초는 다른 깊은 부분을...