1. tenosrflow 2.4.3 버전 일 때 의 최적화
# Random precessing
import numpy as np
import pandas as pd
import random ,os, csv ,re
from glob import glob
# Make Image
import cv2
from PIL import Image
import matplotlib.pyplot as plt
# default load
import tensorflow as tf
from tensorflow.keras.utils import to_categorical
#impage preprocessing
from tensorflow.keras.preprocessing import image as image_utils
from tensorflow.keras.preprocessing.image import(ImageDataGenerator)
from tensorflow.keras.preprocessing.text import(text_to_word_sequence)
#impage preprocessing
from tensorflow.keras import layers
from tensorflow.keras.models import(Model, load_model)
# LabelEncoder
from sklearn.preprocessing import LabelEncoder
# keras models
from tensorflow.keras.layers import (
BatchNormalization, SeparableConv2D, MaxPooling2D, Activation,
Flatten, Dropout, Dense , Input
)
# Keras Applications
from tensorflow.keras.applications import(ResNet50)